- Q1. For light diverging from a point source,
- (a) the wavefront is spherical
- (b) the intensity decreases in proportion to the distance squared
- (c) the wavefront is parabolic
- (d) the intensity at the wavefront does not depend on the distance Solution: (a, b)

Type of wavefront	Intensity	Amplitude
Spherical Light ray Spherical WF Point source		$A \propto \frac{1}{r}$
Cylindrical Light ray Cylindrical WF Line source		$A \approx \frac{1}{\sqrt{r}}$
Plane WF Light rays	I ∝ r ⁰	$A \propto r^0$

Due to the point source light propagates in all directions symmetrically and hence, wavefront will be spherical as shown in the diagram.

As intensity of the source will be-

$$I \propto \frac{1}{r^2}$$

where, r is radius of the wavefront at any time.

Hence the intensity decreases in proportion to the distance squared.